Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Journal of China Pharmaceutical University ; (6): 684-691, 2021.
Article in Chinese | WPRIM | ID: wpr-906761

ABSTRACT

@#To improve the therapeutic effect of cisplatin and reduce its side effects, a multifunctional drug delivery system with targeted and chemo-photothermal effect was constructed.Using polyethylene glycol polylactic acid block copolymer as a carrier, nanoparticles loaded with antitumor drug cisplatin and photosensitizer indocyanine green were prepared by ultrasonic emulsification, and the surface was then modified by cetuximab to prepare cetuximab-decorated and near-infrared (NIR)-activated nanoparticles (CPINPs).The physicochemical properties were characterized by mean particle size, Zeta potential, mAb conjugating rate and photothermal effect; the in vitro cell uptake was measured by laser confocal microscopy; and the in vitro antitumor activity was evaluated by CCK8 assay.The results indicated that CPINPs had mean particle diameter of (263.9 ± 3.73) nm, polydispersity index of 0.18 ± 0.03, Zeta potential of -(23.43 ± 0.42) mV, and cetuximab conjugating rate of (44.0 ± 1.72)%.The in vitro photothermal experiments showed that CPINPs upon NIR irradiation induced a photothermal effect, thus destroying the tumor cells. The in vitro cell uptake experiments demonstrated that NIR irradiation could promote cell uptake, and that more CPINPs were effectively internalized into A549 cells. The in vitro cytotoxicity test indicated that CPINPs treated with NIR irradiation had the effect of combined chemo-photothermal therapy, leading to higher cytotoxicity than that of free cisplatin or treatment without NIR, with IC50 values being (8.67 ± 0.04) μmol/L for 24 h incubation.To sumup the multifunctional drug delivery system constructed in the current work expected to be a more efficient targeted therapy strategy for lung cancer.

2.
Acta Pharmaceutica Sinica B ; (6): 271-282, 2021.
Article in English | WPRIM | ID: wpr-881136

ABSTRACT

The chemotherapy combined with photothermal therapy has been a favorable approach for the treatment of breast cancer. In present study, nanoparticles with the characteristics of photothermal/matrix metalloproteinase-2 (MMP-2) dual-responsive, tumor targeting, and size-variability were designed for enhancing the antitumor efficacy and achieving "on-demand" drug release markedly. Based on the thermal sensitivity of gelatin, we designed a size-variable gelatin nanoparticle (GNP) to encapsulate indocyanine green (ICG) and doxorubicin (DOX). Under an 808 nm laser irradiation, GNP-DOX/ICG responded photothermally and swelled in size from 71.58 ± 4.28 to 160.80 ± 9.51 nm, which was beneficial for particle retention in the tumor sites and release of the loaded therapeutics. Additionally, GNP-DOX/ICG showed a size reduction of the particles to 33.24 ± 4.11 nm and further improved drug release with the degradation of overexpressed MMP-2 in tumor. In the subsequently performed

SELECTION OF CITATIONS
SEARCH DETAIL